
Chapter 4. Console

Input and Output

In This Chapter

In this chapter we will get familiar with the console as a tool for data input

and output. We will explain what it is, when and how to use it, and how most

programming languages access the console. We will get familiar with some of

the features in C# for user interaction: reading text and numbers from the

console and printing text and numbers. We will also examine the main

streams for input-output operations Console.In, Console.Out and

Console.Error, the Console and the usage of format strings for printing

data in various formats.

What Is the Console?

The Console is a window of the operating system through which users can

interact with system programs of the operating system or with other console

applications. The interaction consists of text input from the standard input

(usually keyboard) or text display on the standard output (usually on the

computer screen). These actions are also known as input-output

operations. The text written on the console brings some information and is a

sequence of characters sent by one or more programs.

For each console application the operating system connects input and output

devices. By default these are the keyboard and the screen but they can be

redirected to a file or other devices.

Communication between the User and the Program

A lot of programs communicate in some way with the user. This is necessary

for the user in order to give instructions to them. Modern communication

methods are many and various: they can be through graphical or web-

based interface, console or others. As we mentioned one of the tools for

communication between programs and users is the console, which is

becoming less and less used. This is because the modern user interface

concepts are more convenient and intuitive to work with, from a user’s

perspective.

166 Fundamentals of Computer Programming with C#

When to Use the Console?

In some cases the console remains an irreplaceable tool for communication

with the user. One of these cases is when writing small and simple

programs where it is necessary to focus the attention on the specific problem

to be solved, rather than the elegant representation of the result to the user.

Then a simple solution is used for entering or printing a result, such as input-

output console. Another use case is when we want to test a small piece of

code for a larger application. Due to simplicity of the operation of the console

application we can isolate this part of the code easily and comfortably without

having to go through a complex user interface and a number of screens to get

to the desired code for testing.

How to Launch the Console?

Each operating system has its own way to launch the console. On Windows for

example, it can be done in the following way:

Start -> (All) Programs -> Accessories -> Command Prompt

After starting the console a black screen (this color can be changed) like the

following should appear:

When starting the console the home directory of the current user (in this case

the username is nakov) is used as a current directory and this is displayed as

a guide for the user.

Console can be launched through pressing the Start button

and typing "cmd" in the search box and pressing [Enter] (on

Windows Vista, Windows 7 and later). For Windows XP, go

through the sequence Start -> Run… ->, type in "cmd" and

press [Enter].

For simplified visualization of the results from now on in this chapter instead

of a console screenshot we will use the form:

Results from console

Chapter 4. Console Input and Output 167

More about Consoles

The system console is the black window shown above which displays text

information. It can display text strings and has a cursor, which moves to the

right after each character is printed. After the cursor passes through the last

column of the console (usually it has 80 columns), it moves to the beginning

of the next line. If the cursor passes through the last line, the console scrolls

its content upwards and shows a new empty line below the last line.

Programs in Windows can be console-based, desktop-based, Web-based and

other. The console-based programs use the console for their input and

output. The desktop-based programs use graphical user interface (GUI). The

Web-based programs have Web-based user interface. In this book we will

write console-based programs almost all the time, so their input will be read

from the keyboard and their output will be printed in the console.

Some console-based programs expect the users to enter text, numbers and

other data, and this is usually done through the keyboard.

The console in Windows is often associated with the system command

interpreter, also called the "Command Prompt" or "shell" or which is a

console-based program in the operating system, which provides access to

system commands as well as a wide range of programs, which are part of the

operating system or are additionally installed to it.

The word "shell" means "wrap" and has a meaning of a wrapper between the

user and the inside of the operating system.

The so called operating system "shells" can be split into two main categories

according to the type of interface they can provide to the operating system:

- CLI – Command Line Interface – is a console for commands (such as

cmd.exe in Windows and bash in Linux).

- GUI – Graphical User Interface – is a graphical work environment (such

as Windows Explorer).

For both types the main purpose of the shell is to run other programs with

which the user works although most of the interpreters also support some

advanced features such as the opportunity to examine the content of

directories with files.

Each operating system has its own command interpreter that

has its own commands.

For example, when starting Windows console, we run the so-called Windows

command interpreter in it (cmd.exe) that executes system programs and

commands in interactive mode. For example, the command dir shows the

files in the current directory:

168 Fundamentals of Computer Programming with C#

Basic Console Commands

We will take a look at some basic commands in the Windows standard

command prompt, which is useful for finding and launching programs.

Windows Console Commands

The command interpreter running in the console is also called "Command
Prompt" or "MS-DOS Prompt" (in older versions of Windows). We will take a

look at some basic commands for this interpreter:

Command Description

dir Displays the content of the current directory.

cd <directory name> Changes the current directory.

mkdir <directory name> Creates a new directory in the current one.

rmdir <directory name> Deletes an existing directory.

type <file name> Prints file content.

copy <src file>
<destination file>

Copies one file into another.

Here is an example of multiple commands executed in the Windows command

shell. The result of the commands’ execution is displayed on the console:

C:\Documents and Settings\User1>cd "D:\Project2009\C# Book"

C:\Documents and Settings\User1>D:

Chapter 4. Console Input and Output 169

D:\Project2008\C# Book>dir
 Volume in drive D has no label.
 Volume Serial Number is B43A-B0D6

 Directory of D:\Project2009\C# Book

26.12.2009 12:24 <DIR> .
26.12.2009 12:24 <DIR> ..
26.12.2009 12:23 537 600 Chapter-4-Console-Input-
Output.doc
26.12.2009 12:23 <DIR> Test Folder
26.12.2009 12:24 0 Test.txt
 2 File(s) 537 600 bytes
 3 Dir(s) 24 154 062 848 bytes free

D:\Project2009\C# Book>

Standard Input-Output

The standard input-output also known as "Standard I/O" is a system input-

output mechanism created since the UNIX operating systems was developed

many years ago. Special peripheral devices for input and output are used,

through which data can be input and output.

When the program is in mode of accepting information and expects action by

the user, there is a blinking cursor on the console showing that the system is

waiting for command entering.

Later we will see how we can write C# programs that expect input data to be

entered from the console.

Printing to the Console

In most programming languages printing and reading the information from

the console is implemented in similar ways and the most of the solutions are

based on the concept of "standard input" and "standard output".

Standard Input and Standard Output

The operating system is required to define standard input-output

mechanisms for user interaction. When starting a given console program,

system code running at the initialization of the program is responsible for

opening (closing) of streams to the allocated by the operating system

mechanisms for input-output. This system code initializes the program

abstraction for user interaction embedded in the respective programming

language. In this way, the application started can automatically read the user

170 Fundamentals of Computer Programming with C#

input from the standard input stream (in C# this is Console.In), print

information on the standard output stream (in C# this is Console.Out) and

can signal for problem situations in the standard error stream (in C# this is

Console.Error).

The concept of the streams will be later examined in details. For now we will

focus on the theoretical basis related to the program input and output in C#.

Devices for Console Input and Output

Besides the keyboard an application input can come from many other places,

such as file, microphone, barcode reader and others. The output of a

program may be on the console (on the screen), as well as in a file or another

output device, such as a printer:

We will show a basic example that illustrates text printing to the console

through the abstraction for accessing the standard input and standard output

provided to us by C#:

Console.Out.WriteLine("Hello World");

The result of the above code execution would be the following:

Hello World

Console.Out Stream

System.Console class has different properties and methods (classes are

considered in details in the chapter "Creating and Using Objects") which are

used to read and display text on the console as well as its formatting. Among

them there are three properties that make impression and they are related to

data entering and displaying, namely the Console.Out, Console.In and

Console.Error. They provide access to the standard streams for printing on

the console, for reading from the console and to the error messages reporting

stream accordingly. Although we could use them directly, the other methods

of System.Console give us the convenience for working with input-output

console operations and actually most often these properties are ignored.

However it is good to remember that this part of the console functionality is

working on these streams. If needed, we can replace the default input /

output / error streams at runtime by using the methods Console.SetOut(…),

Console.SetIn(…) and Console.SetError(…) respectively.

Chapter 4. Console Input and Output 171

Now we will examine the most commonly used methods for text printing on

the console.

Using Console.Write(…) and Console.WriteLine(…)

Work with these methods is easy because they can print all the basic types

(string, numeric and primitive types).

Here are some examples of printing various types of data:

// Print String
Console.WriteLine("Hello World");

// Print int
Console.WriteLine(5);

// Print double
Console.WriteLine(3.14159265358979);

The result of this code execution looks like this:

Hello World
5
3.14159265358979

As we see by using Console.WriteLineſ…ƀ it is possible to print various data

types because for each type there is a predefined version of the

methodWriteLineſ…ƀ in the Console class.

The difference between Writeſ…ƀ and WriteLineſ…ƀ is that the Writeſ…ƀ

method prints on the console what it is provided between the parentheses but

does nothing in addition while the method WriteLineſ…ƀ means directly

“write line”. This method does what the Writeſ…ƀ one does but in addition

goes to a new line. In fact the method does not print a new line but simply

puts a “command” for moving cursor to the position where the new line

starts (this command consists of the character \r followed by \n).

Here is an example, which illustrates the difference between Writeſ…ƀ and

WriteLineſ…ƀ:

Console.WriteLine("I love");
Console.Write("this ");
Console.Write("Book!");

The output of this example is:

I love
this Book!

172 Fundamentals of Computer Programming with C#

We notice that the output of this example is printed on two lines, even though

the code is on three. This happens because on the first line of code we use

WriteLineſ…ƀ which prints "I love" and then goes to a new line. In the next

two lines of the code uses the Writeſ…ƀ method, which prints without going

on a new line and thus the words "this" and "Book!" remain on the same

line.

Concatenation of Strings

In general C# does not allow the use of operators over string objects. The

only exception to this rule is the addition operation (+) which concatenates

(joins) two strings and returns as result a new string. This allows chaining

of concatenate (+) operations one after another in a sequence. The next

example represents concatenation of three strings.

string age = "twenty six";
string text = "He is " + age + " years old.";
Console.WriteLine(text);

The result of this code execution is again a string:

He is twenty six years old.

Concatenation of Mixed Types

What happens when we want to print larger and more complex text, which

consists of different types? Until now we used versions of the method

WriteLineſ…ƀ for a specific type. Is it necessary when we want to print

different types at once to use different versions of the method WriteLineſ…ƀ
for each of these types? The answer to this question is “no” because in C# we
can unite text and other data (for instance, numeric) by using the "+"

operator. The following example is like the previous but in it the years (age)

are from integer type:

int age = 26;
string text = "He is " + age + " years old.";
Console.WriteLine(text);

In the example is concatenation and printing on the screen performed. The

result of the example is the following:

He is 26 years old.

On the second line of the example code we see that a concatenation of the

string "He is" and the integer type "age" is performed. We are trying to

combine two different types. This is possible because of the presence of

the following important rule.

Chapter 4. Console Input and Output 173

When a string is involved in concatenation with any other

type the result is always a string.

From the rule it is clear that the result of "He is " + age is again a string and

then the result is added to the last part of the expression " years old.". So

after calling a chain of + operators ultimately the result is a string and thus

the string version of the method WriteLineſ…ƀ is invoked.

For short the above example can be written as follows:

int age = 26;
Console.WriteLine("He is " + age + " years old.");

Some Features of String Concatenation

There are some interesting situations with concatenation (addition) of strings

that you need to know and be careful about because they lead to errors. The

following example represents a surprising behavior of the code:

string s = "Four: " + 2 + 2;
Console.WriteLine(s);
// Four: 22

string s1 = "Four: " + (2 + 2);
Console.WriteLine(s1);
// Four: 4

As seen from the example the operators’ execution order (see chapter
"Operator and Expressions") is of great importance! In our example first the

concatenation of "Four: " to "2" is performed and the result of the

operation is string. After that, another concatenation with the second

number is performed and the obtained unexpected result is "Four: 22"

instead of the expected "Four: 4". This is because the operations are

performed from left to right and in this scenario a string participates in each

of them.

In order to avoid this unpleasant situation we can use parentheses that will

change the order of operators’ execution can be used to achieve the desired
result. Parentheses are operators with highest priority and make the

execution of the operation "addition" of the two numbers happen before the

concatenation with the string on the left. Thus first the addition of the two

numbers is done and then they are concatenated with the string.

This mistake is very common for beginner programmers because they do not

consider that string concatenation is performed from left to right because the

addition of numbers is of the same priority than as concatenation.

174 Fundamentals of Computer Programming with C#

When you concatenate strings and also sum numbers, use

parentheses to specify the correct order of operations.

Otherwise they are executed from left to right.

Formatted Output with Write(…) and WriteLine(…)

For printing long and elaborate series of elements, special options (also

known as overloads) of the methods Writeſ…ƀ and WriteLineſ…ƀ have been

introduced. These options have a completely different concept than the

standard methods for printing in C#. Their main idea is to adopt a special

string, formatted with special formatting characters and list of values, which

should be substituted in place of “the format specifiers”. Here is how
Writeſ…ƀ is defined in the standard C# libraries:

public static void Write(string format, object arg0,
 object arg1, object arg2, object arg3, …ƀ;

Formatted Output – Examples

The following example prints twice the same thing but in different ways:

string str = "Hello World!";

// Print (the normal way)
Console.Write(str);

// Print (through formatting string)
Console.Write("{0}", str);

The result of this example execution is:

Hello World!Hello World!

We see as a result "Hello, World!" twice on one line. This is because there

is no printing of a new line in the program.

First we print the string in a well-known way in order to see the difference

with the other approach. The second printing is the formatting Writeſ…ƀ and

the first argument is the format string. In this case {0} means to put the first

argument after the formatting string in the place of {0}. The expression {0}

is called a placeholder, i.e. a place that will be replaced by a specific value

while printing.

The next example will further explain this concept:

string name = "John";
int age = 18;

Chapter 4. Console Input and Output 175

string town = "Seattle";
Console.Write(
 "{0} is {1} years old from {2}!\n", name, age, town);

The result of this example execution is as follows:

John is 18 years old from Seattle!

From the signature of this Writeſ…ƀ version we saw that the first argument is

the format string. Following is a series of arguments, which are placed where

we have a number enclosed in curly brackets. The expression {0} means to

put in its place the first of the arguments submitted after the format string

(in this case name). Next is {1} which means to replace with the second of

the arguments (age). The last placeholder is {2}, which means to replace with

the next parameter (town). Last is \n, which is a special character that

indicates moving to a new line.

It is appropriate to mention that actually the new line command on Windows

is \r\n, and on Unix-based operating systems – \n. When working with

the console it does not matter that we use only \n because the standard input

stream considers \n as \r\n but if we write into a file, for example, using only

\n is wrong (on Windows).

Composite Formatting

The methods for formatted output of the Console class use the so-called

composite formatting feature. The composite formatting is used for

console printing as well as in certain operations with strings. We examined the

composite formatting in the simplest of its kind in the previous example but it

has significantly bigger potential than what we have seen so far. Basically the

composite formatting uses two things: composite formatting string and

series of arguments, which are replaced in certain places in the string.

Composite Formatting String

The composite formatting string is a mixture of normal text and formatting

items. In formatting the normal text remains the same as in the string and

the places of formatting items are replaced by the values of the respective

arguments printed according to certain rules. These rules are specified using

the syntax of formatting items.

Formatting Items

The formatting items provide the possibility for powerful control over the

displayed value and therefore can obtain very complicated form. The following

formation scheme represents the general syntax of formatting items:

{index[,alignment][:formatString]}

176 Fundamentals of Computer Programming with C#

As we notice the formatting item begins with an opening curly bracket { and

ends with a closing curly bracket }. The content between the brackets is

divided into three components of which only the index component is

mandatory. Now we will examine each of them separately.

Index Component

The index component is an integer and indicates the position of the

argument from the argument list. The first argument is indicated by "0", the

second by "1", etc. The composite formatting string allows having multiple

formatting items that relate to one and same argument. In this case index

component of these items is one and the same number. There is no restriction

on the sequence of arguments’ calling. For example, we could use the
following formatting string:

Console.Write(
 "{1} is {0} years old from {3}!", 18, "John", 0, "Seattle");

In cases where some of the arguments are not referenced by any of the

formatting items, those arguments are simply ignored and do not play a role.

However it is good to remove such arguments from the list of arguments

because they introduce unnecessary complexity and may lead to confusion.

In the opposite case, when a formatting item refers an argument that does

not exist in the list of arguments, an exception is thrown. This may occur,

for example, if we have formatting placeholder {4} and we submitted a list of

only two arguments.

Alignment Component

The alignment component is optional and indicates the string alignment. It

is a positive or negative integer and the positive values indicate alignment

to the right and the negative – alignment to the left. The value of the number

indicates the number of positions in which to align the number. If the string

we want to represent has a length greater than or equal to the value of the

number, then this number is ignored. If it is less, however, the unfilled

positions are filled in with spaces.

For example, let’s try the following formatting:

Console.WriteLine("{0,6}", 123);
Console.WriteLine("{0,6}", 1234);
Console.WriteLine("{0,6}", 12);
Console.Write("{0,-6}", 123);
Console.WriteLine("--end");

It will output the following result:

 123

Chapter 4. Console Input and Output 177

 1234
 12
123 --end

If we decide to use the alignment component, we must separate it from the

index component by a comma as it is done in the example above.

The "formatString" Component

This component specifies the specific formatting of the string. It varies

depending on the type of argument. There are three main types of

formatString components:

- for numerical types of arguments

- for arguments of type date (DateTime)

- for arguments of type enumeration (listed types)

Format String Components for Numbers

This type formatString component has two subtypes: standard-defined

formats and user-defined formats (custom format strings).

Standard Formats for Numbers

These formats are defined by one of several format specifiers, which are

letters with particular importance. After the format specifier there can be a

positive integer called precision, which has a different meaning for the

different specifiers. When it affects the number of decimal places after the

decimal point, the result is rounded. The following table describes specifiers

and their precision meaning:

Specifier Description

"C" or "c"

Indicates the currency and the result will be displayed

along with the currency sign for the current “culture”
(for example, English). The precision indicates the

number of decimal places after the decimal point.

"D" or "d"

An integer number. The precision indicates the

minimum number of characters for representing the

string and, if necessary, zeroes are supplemented in the

beginning.

"E" or "e"
Exponential notation. The precision indicates the

number of places after the decimal point.

"F" or "f"
Integer or decimal number. The precision indicates

the number of signs after the decimal point.

178 Fundamentals of Computer Programming with C#

"N" or "n"

Equivalent to "F" but represents also the corresponding

separator for thousands, millions, etc. (for example, in

the English language often the number "1000" is

represented as "1,000" – with comma between the

number 1 and the zeroes).

"P" or "p"
Percentage: it will multiply the number by 100 and will

display the percent character upfront. The precision

indicates the number of signs after the decimal point.

"X" or "x"

Displays the number in hexadecimal numeral system.

It works only for integer numbers. The precision

indicates minimum numbers of signs to display the

string as the missing ones are supplemented with zeroes

at the beginning.

Part of the formatting is determined by the current “culture” settings,

which are taken by default from the regional settings of the operating system.

"The cultures" are set of rules that are valid for a given language or a given

country and that indicate which character is to be used as decimal separator,

how the currency is displayed, etc. For example, for the Japanese "culture"

the currency is displayed by adding "¥" after the amount, while for the

American "culture", the character "$" is displayed before the amount. For

Bulgarian currency is suffixed by " лв.".

Standard Formats for Numbers – Example

Let’s see a few examples of usage of the specifiers represented in the table

above. In the code below we assume the regional settings are Bulgarian so

the currency will be printed in Bulgarian, the decimal separator will be "," and

the thousands separator will be space (the regional settings can be changed

from Control Panel in Windows):

StandardNumericFormats.cs

class StandardNumericFormats
{
 static void Main()
 {
 Console.WriteLine("{0:C2}", 123.456);
 //Output: ɨɩɪ,ɫɭ ȟȖ.
 Console.WriteLine("{0:D6}", -1234);
 //Output: -001234
 Console.WriteLine("{0:E2}", 123);
 //Output: 1,23E+002
 Console.WriteLine("{0:F2}", -123.456);
 //Output: -123,46

Chapter 4. Console Input and Output 179

 Console.WriteLine("{0:N2}", 1234567.8);
 //Output: 1 234 567,80
 Console.WriteLine("{0:P}", 0.456);
 //Output: 45,60 %
 Console.WriteLine("{0:X}", 254);
 //Output: FE
 }
}

If we run the same code with English (United States) culture, the output will

be as follows:

$123.46
-001234
1.23E+002
-123.46
1,234,567.80
45.60 %
FE

Custom Formats for Numbers

All formats that are not standard are assigned to the user (custom) formats.

For the custom formats are again defined a set of specifiers and the

difference with the standard formats is that a number of specifiers can be

used (in standard formats only a single specifier is used). The following table

lists various specifiers and their meaning:

Specifier Description

0
Indicates a digit. If at this position of the result a digit is

missing, a zero is written instead.

Indicates a digit. Does not print anything if at this

position in the result a digit is missing.

. Decimal separator for the respective “culture”.

, Thousands separator for the respective “culture”.

%
Multiplies the result by 100 and prints the character for

percent.

E0 or E+0 or E-0

Indicates an exponential notation. The number of zeroes

indicates the number of signs of the exponent. The sign

"+" means that we always want to represent also the

number’s sign while minus means to display the sign

only if the value is negative.

180 Fundamentals of Computer Programming with C#

There are many characteristics regarding the use of custom formats for

numbers, but they will not be discussed here. You may find more information

in MSDN. Here are some simple examples that illustrate how to use custom

formatting strings (the output is given for the U.S. culture):

CustomNumericFormats.cs

class CustomNumericFormats
{
 static void Main()
 {
 Console.WriteLine("{0:0.00}", 1);
 //Output: 1.00
 Console.WriteLine("{0:#.##}", 0.234);
 //Output: .23
 Console.WriteLine("{0:#####}", 12345.67);
 //Output: 12346
 Console.WriteLine("{0:(0#) ### ## ##}", 29342525);
 //Output: (02) 934 25 25
 Console.WriteLine("{0:%##}", 0.234);
 //Output: %23
 }
}

Format String Components for Dates

When formatting dates we again have separation of standard and custom

formats.

Standard Defined Date Formats

Since the standard defined formats are many we will list only few of them.

The rest can be easily checked on MSDN.

Specifier Format (for English (United States) "culture")

d 2/27/2012

D February 27, 2012

t 17:30 (hour)

T 17:30:22 (hour)

Y or y February 2012 (only month and year)

Custom Date Formats

Similar to custom formats for numbers here we have multiple format

specifiers and we can combine several of them. Since here are many

Chapter 4. Console Input and Output 181

specifiers we will show only some of them, which we will use to demonstrate

how to use custom formats for dates. Consider the following table:

Specifiers Format (for English (United States) "culture")

d Day – from 1 to 31

dd Day – from 01 to 31

M Month – from 1 to 12

MM Month – from 01 to 12

yy The last two digits of the year (from 00 to 99)

yyyy Year written in 4 digits (e.g. 2012)

hh Hour – from 00 to 11

HH Hour – from 00 to 23

m Minutes – from 0 to 59

mm Minutes – from 00 to 59

s Seconds – from 0 to 59

ss Seconds – from 00 to 59

When using these specifiers we can insert different separators between the

different parts of the date, such as "." or "/". Here are few examples:

DateTime d = new DateTime(2012, 02, 27, 17, 30, 22);
Console.WriteLine("{0:dd/MM/yyyy HH:mm:ss}", d);
Console.WriteLine("{0:d.MM.yy}", d);

Execution of these examples gives the following result for the U.K. culture:

27/02/2012 17:30:22
27.02.12

Note that the result can vary depending on the current culture. For example if

we run the same code in the Bulgarian culture, the result will be different:

27.02.2012 17:30:22
27.02.12

Format String Enumeration Components

Enumerations (listed types) are data types that can take as value one of

several predefined possible values (e.g. the seven days of the week). We will

examine them in details in the chapter "Defining Classes".

182 Fundamentals of Computer Programming with C#

In enumerations there is very little to be formatted. Four standard format

specifiers are defined:

Specifier Format

G or g Represents enumeration as a string.

D or d Represents enumeration as a number.

X or x
Represents enumeration as a number in hexadecimal

numeral system and with eight digits.

Here are some examples:

Console.WriteLine("{0:G}", DayOfWeek.Wednesday);
Console.WriteLine("{0:D}", DayOfWeek.Wednesday);
Console.WriteLine("{0:X}", DayOfWeek.Wednesday);

While executing the above code we get the following result:

Wednesday
3
00000003

Formatting Strings and Localization

When using format strings it is possible one and same program to print

different values depending on the localization settings for the operating

system. For example, when printing the month from a given date if the

current localization is English it will print in English, for example “August”,
while if the localization is French it will print in French, for example "Août".

When launching a console application it automatically retrieves the operating

system localization (culture settings) and uses it for reading and writing

formatted data (like numbers, dates, currency, etc.).

Localization in .NET is also called "culture" and can be changed manually by

the class System.Globalization.CultureInfo. Here is an example in which

we print a number and a date by the U.S. and Bulgarian localization:

CultureInfoExample.cs

using System;
using System.Threading;
using System.Globalization;

class CultureInfoExample
{
 static void Main()

Chapter 4. Console Input and Output 183

 {
 DateTime d = new DateTime(2012, 02, 27, 17, 30, 22);

 Thread.CurrentThread.CurrentCulture =
 CultureInfo.GetCultureInfo("en-US");
 Console.WriteLine("{0:N}", 1234.56);
 Console.WriteLine("{0:D}", d);

 Thread.CurrentThread.CurrentCulture =
 CultureInfo.GetCultureInfo("bg-BG");
 Console.WriteLine("{0:N}", 1234.56);
 Console.WriteLine("{0:D}", d);
 }
}

When starting the example the following result is obtained:

1,234.56
Monday, February 27, 2012
1 234,56
ɩɮ ФșȖȤȧаȤи ɩ0ɨɩ ȗ.

Console Input

As in the beginning of this chapter we explained, the most suitable for small

applications is the console communication because it is easiest to implement.

The standard input device is the part of the operating system that controls

from where the program will receive its input data. By default "the standard

input device" reads its input from a driver "attached" to the keyboard. This

can be changed and the standard input can be redirected to another location,

for example to a file, but this is rarely done.

Each programming language has a mechanism for reading and writing to the

console. The object that controls the standard input stream in C#, is

Console.In.

From the console we can read different data:

- text;

- other types after parsing the text;

Actually for reading the standard input stream Console.In is rarely used

directly. The class Console provides two methods Console.Read() and

Console.ReadLine() that run on this stream and usually reading from the

console is done by them.

184 Fundamentals of Computer Programming with C#

Reading through Console.ReadLine()

The method Console.ReadLine() provides great convenience for reading

from console. How does it work? When this method is invoked, the program

prevents its work and wait for input from the console. The user enters some

string on the console and presses the [Enter] key. At this moment the

console understands that the user has finished entering and reads the string.

The method Console.ReadLine() returns as result the string entered by the

user. Now perhaps it is clear why this method has this name.

The following example demonstrates the operation of Console.ReadLine():

UsingReadLine.cs

class UsingReadLine
{
 static void Main()
 {
 Console.Write("Please enter your first name: ");
 string firstName = Console.ReadLine();

 Console.Write("Please enter your last name: ");
 string lastName = Console.ReadLine();

 Console.WriteLine("Hello, {0} {1}!", firstName, lastName);
 }
}

// Output: Please enter your first name: John
// Please enter your last name: Smith
// Hello, John Smith!

We see how easy it is to read text from the console by using the method

Console.ReadLine():

- We print some text in the console, which asks for a user name (this is

only for the convenience of the user and is not obligatory).

- We execute reading of an entire line from the console using the method

ReadLine(). This leads to blocking the program until the user enters

some text and presses [Enter].

- Then we repeat these two steps for the last name.

- Once we have gathered the necessary information we print it on the

console.

Chapter 4. Console Input and Output 185

Reading through Console.Read()

The method Read() behaves slightly different than ReadLine(). As a

beginning it reads only one character and not the entire line. The other

significant difference is that the method does not return directly the read

character but its code. If we want to use the result as a character we must

convert it to a character or use the method Convert.ToChar() on it. There is

one important characteristic: the character is read only when the [Enter]

key is pressed. Then the entire string written on the console is transferred to

the buffer of the standard input string and the method Read() reads the first

character of it. In subsequent invocations of the method if the buffer is not

empty (i.e. there are already entered in but still unread characters) then the

program execution will not stop and wait, but will directly read the next

character from the buffer and thus until the buffer is empty. Only then the

program will wait again for a user input if Read() is called again. Here is an

example:

UsingRead.cs

class UsingRead
{
 static void Main()
 {
 int codeRead = 0;
 do
 {
 codeRead = Console.Read();
 if (codeRead != 0)
 {
 Console.Write((char)codeRead);
 }
 }
 while (codeRead != 10);
 }
}

This program reads one line entered by the user and prints it character by

character. This is possible due to a small trick – we are previously aware that

the [Enter] key actually enters two characters in the buffer. These are the

"carriage return" code (Unicode 13) followed by the "linefeed" code

(Unicode 10). In order to understand that one line is finished we are looking

for a character with code 10 in the Unicode table. Thus the program reads

only one line and exits the loop.

We should mention that the method Console.Read() is rarely used in

practice if there is an alternative to use Console.ReadLine(). The reason for

this is that the possibility of mistaking with Console.Read() is much greater

186 Fundamentals of Computer Programming with C#

than if we choose an alternative approach and the code will most likely be

unnecessarily complicated.

Reading Numbers

Reading numbers from the console in C# is not done directly. In order to

read a number we should have previously read the input as a string (using

ReadLine()) and then convert this string to a number. The operation of

converting a string into another type is called parsing. All primitive types

have methods for parsing. We will give a simple example for reading and

parsing of numbers:

ReadingNumbers.cs

class ReadingNumbers
{
 static void Main()
 {
 Console.Write("a = ");
 int a = int.Parse(Console.ReadLine());

 Console.Write("b = ");
 int b = int.Parse(Console.ReadLine());

 Console.WriteLine("{0} + {1} = {2}", a, b, a + b);
 Console.WriteLine("{0} * {1} = {2}", a, b, a * b);

 Console.Write("f = ");
 double f = double.Parse(Console.ReadLine());
 Console.WriteLine("{0} * {1} / {2} = {3}",
 a, b, f, a * b / f);
 }
}

The result of program execution might be as follows (provided that we enter

5, 6 and 7.5 as input):

a = 5
b = 6
5 + 6 = 11
5 * 6 = 30
f = 7.5
5 * 6 / 7.5 = 4

In this particular example the specific thing is that we use parsing methods

of numerical types and when wrong a result is passed (such as text) this

Chapter 4. Console Input and Output 187

will cause an error (exception) System.FormatException. This is especially

true when reading real numbers, because the delimiter used between the

whole and fractional part is different in various cultures and depends on

regional settings of the operating system.

The separator for floating point numbers depends on the

current language settings of the operating system (Regional

and Language Options in Windows). In some systems as

separator the character comma can be used, in others – point

(dot). Entering a point (dot) instead of a comma will cause

System.FormatException when the current language settings

use comma.

The exceptions as a mechanism for reporting errors will be discussed in the

chapter "Exception Handling". For now you can consider that when the

program provides an error this is associated with the occurrence of an

exception that prints detailed information about the error on the console. For

example, let’s suppose that the regional settings of the computer are

Bulgarian and we execute the following code:

Console.Write("Enter a floating-point number: ");
string line = Console.ReadLine();
double number = double.Parse(line);
Console.WriteLine("You entered: {0}", number);

If we enter the number "3.14" (with a wrong decimal separator for the

Bulgarian settings) we will get the following exception (error message):

Unhandled Exception: System.FormatException: Input string was
not in a correct format.
 at System.Number.StringToNumber(String str, NumberStyles
options, NumberBuffer& number, NumberFormatInfo info, Boolean
parseDecimal)
 at System.Number.ParseDouble(String value, NumberStyles
options, NumberFormatInfo numfmt)
 at System.Double.Parse(String s, NumberStyles style,
NumberFormatInfo info)
 at System.Double.Parse(String s)
 at ConsoleApplication.Program.Main() in
C:\Projects\IntroCSharpBook\ConsoleExample\Program.cs:line 14

Parsing Numbers Conditionally

When parsing a string to a number using the method Int32.Parse(string)

or by Convert.ToInt32(string) if the submitted string is not a number we

188 Fundamentals of Computer Programming with C#

get an exception. Sometimes it is necessary to catch the failed parsing and to

print an error message or to ask the user to enter in a new value.

Interception of an incorrectly entered number when parsing a sting can be

done in two ways:

- by catching exceptions (see the chapter "Exception Handling");

- by conditional parsing (using the method TryParseſ…ƀ).

Let’s consider the conditional parsing of numbers in .NET Framework. The

method Intɪɩ.TryParseſ…ƀ accepts two parameters – a parsing string and a

variable to record the result of parsing. If the parsing is successful the method

returns value true. For greater clarity, let’s consider an example:

string str = Console.ReadLine();
int intValue;
bool parseSuccess = Int32.TryParse(str, out intValue);
Console.WriteLine(parseSuccess ?
 "The square of the number is " + intValue * intValue + "."
 : "Invalid number!");

In the example, conditional parsing of a string entered from the console to the

integer type Int32 is performed. If we enter as input "2", parsing will be

successful so the result of TryParse() will be true, and the parsed number

will be recorded in the variable intValue and on the console the squared

number will be printed:

Result: The square of the number is 4.

If we try to parse an invalid number such as "abc", TryParse() will return

false as a result and the user that will be notified that he has entered an

invalid number:

Invalid number!

Note that the method TryParse() as a result of its work returns

simultaneously two values: the parsed number (as an output parameter)

and a Boolean value as a result of the method invocation. Returning multiple

values at once is possible because one of the values is returned as an output

parameter (out parameter). The output parameters return value in a

predefined for the purpose variable coinciding with their type. When calling a

method the output parameters must be preceded by the keyword out.

Reading by Console.ReadKey()

The method Console.ReadKey() waits for key pressing on the console and

reads its character equivalent without the need of pressing [Enter]. The

result of invoking ReadKey() is information about the pressed key (or

Chapter 4. Console Input and Output 189

more accurately a key combination) as an object of type ConsoleKeyInfo.

The obtained object contains the character that is entered by the pressed key

combination (property KeyChar) along with information about the keys

[Shift], [Ctrl] and [Alt] (property Modifiers). For example, if we press

[Shift+A] we will read a capital letter 'A' while in the Modifiers property we will

have the Shift flag. Here is an example:

ConsoleKeyInfo key = Console.ReadKey();
Console.WriteLine();
Console.WriteLine("Character entered: " + key.KeyChar);
Console.WriteLine("Special keys: " + key.Modifiers);

If we execute the program and press [Shift+A], we will obtain the following

result:

A
Character entered: A
Special keys: Shift

Simplified Reading of Numbers through Nakov.IO.Cin

There is no standard easy way to read several numbers, located on the same

line, separated by a space. In C# and .NET Framework we need to read a

string, split it into tokens using the space as separator and parse the obtained

tokens to extract the numbers. In other languages and platforms like C++ we

can directly read numbers, characters and text from the console without

parsing. This is not available in C# but we can use an external library or class.

The standard library Nakov.IO.Cin provides a simplified way to read

numbers from the console. You can read about it from the blog of its author

Svetlin Nakov: http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-

read-from-console-nakov-io-cin/. Once we have copied the file Cin.cs from

Nakov.IO.Cin into our Visual Studio C# project, we could write code like this:

using Nakov.IO;
…
int x = Cin.NextInt();
double y = Cin.NextDouble();
decimal d = Cin.NextDecimal();
Console.WriteLine("Result: {0} {1} {2}", x, y, d);

If we execute the code, we can enter 3 numbers by putting any amount of

whitespace separators between them. For example we can enter the first

number, two spaces, the second number, a new line + space and the last

number + space. The numbers will be read correctly and the output will

be as follows:

http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/
http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/

190 Fundamentals of Computer Programming with C#

3 2.5
 3.58
Result: 3 2.5 3.58

Console Input and Output – Examples

We will consider few more examples of console input and output that will

show us some interesting techniques.

Printing a Letter

Next is a practical example representing console input and formatted text in

the form of a letter:

PrintingLetter.cs

class PrintingLetter
{
 static void Main()
 {
 Console.Write("Enter person name: ");
 string person = Console.ReadLine();

 Console.Write("Enter book name: ");
 string book = Console.ReadLine();

 string from = "Authors Team";

 Console.WriteLine(" Dear {0},", person);
 Console.Write("We are pleased to inform " +
 "you that \"{1}\" is the best Bulgarian book. {2}" +
 "The authors of the book wish you good luck {0}!{2}",
 person, book, Environment.NewLine);

 Console.WriteLine(" Yours,");
 Console.WriteLine(" {0}", from);
 }
}

The result of the execution of the above program could be the following:

Enter person name: Readers
Enter book name: Introduction to programming with C#
 Dear Readers,
We are pleased to inform you that "Introduction to programming

Chapter 4. Console Input and Output 191

with C#" is the best Bulgarian book.
The authors of the book wish you good luck Readers!
 Yours,
 Authors Team

In this example we have a letter template. The program "asks" a few

questions to the user and reads from the console information needed to print

the letter by replacing the formatting specifiers with the data filled in by the

user.

Area of a Rectangle or a Triangle

We will consider another example: calculating of an area of a rectangle or a

triangle.

CalculatingArea.cs

class CalculatingArea
{
 static void Main()
 {
 Console.WriteLine("This program calculates " +
 "the area of a rectangle or a triangle");

 Console.WriteLine("Enter a and b (for rectangle) " +
 "or a and h (for triangle): ");

 int a = int.Parse(Console.ReadLine());
 int b = int.Parse(Console.ReadLine());

 Console.WriteLine("Enter 1 for a rectangle or " +
 "2 for a triangle: ");

 int choice = int.Parse(Console.ReadLine());
 double area = (double) (a * b) / choice;
 Console.WriteLine("The area of your figure is " + area);
 }
}

The result of the above example’s execution is as follows:

This program calculates the area of a rectangle or a triangle
Enter a and b (for rectangle) or a and h (for triangle):
5
4

192 Fundamentals of Computer Programming with C#

Enter 1 for a rectangle or 2 for a triangle:
2
The area of your figure is 10

Exercises

1. Write a program that reads from the console three numbers of type int

and prints their sum.

2. Write a program that reads from the console the radius "r" of a circle

and prints its perimeter and area.

3. A given company has name, address, phone number, fax number, web

site and manager. The manager has name, surname and phone number.

Write a program that reads information about the company and its

manager and then prints it on the console.

4. Write a program that prints three numbers in three virtual columns

on the console. Each column should have a width of 10 characters and

the numbers should be left aligned. The first number should be an

integer in hexadecimal; the second should be fractional positive; and

the third – a negative fraction. The last two numbers have to be

rounded to the second decimal place.

5. Write a program that reads from the console two integer numbers (int)

and prints how many numbers between them exist, such that the

remainder of their division by 5 is 0. Example: in the range (14, 25)

there are 3 such numbers: 15, 20 and 25.

6. Write a program that reads two numbers from the console and prints the

greater of them. Solve the problem without using conditional

statements.

7. Write a program that reads five integer numbers and prints their

sum. If an invalid number is entered the program should prompt the user

to enter another number.

8. Write a program that reads five numbers from the console and prints the

greatest of them.

9. Write a program that reads an integer number n from the console. After

that reads n numbers from the console and prints their sum.

10. Write a program that reads an integer number n from the console and

prints all numbers in the range [ɨ…n], each on a separate line.

11. Write a program that prints on the console the first 100 numbers in the

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

12. Write a program that calculates the sum (with precision of 0.001) of

the following sequence: 1 + 1/2 - 1/3 + 1/4 - м/р + …

Chapter 4. Console Input and Output 193

Solutions and Guidelines

1. Use the methods Console.ReadLine() and Int32.Parse().

2. Use Math.PI constant and the well-known geometric formulas.

3. Format the text with Writeſ…ƀ or WriteLineſ…ƀ similar to the example

with the letter that we looked at.

4. Use the format strings explained in the “Composite Formatting” section

and the method Console.WriteLine(). Below is a piece of the code:

int hexNum = 2013;
Console.WriteLine("|0x{0,-8:X}|", hexNum);
double fractNum = -1.856;
Console.WriteLine("|{0,-10:f2}|", fractNum);

5. There are two approaches for solving the problem:

First approach: Use mathematical tricks for optimized calculation based

on the fact that every fifth number is divisible by 5. Think how to

implement this correctly and about the borderline cases.

The second approach is easier but it works slower. With a for-loop

each number within the given range can be checked. You should read in

Internet or in the chapter "Loops" how to use for-loops.

6. Since the problem requires a solution, which does not use conditional

statements, you should use a different approach. Two possible solutions

of the problem include the use of functions of class Math. The greater of

the two numbers you can find with the function Math.Max(a, b) and the

smaller with Math.Min(a, b).

Another solution to the problem includes usage of the function for

taking the absolute value of a number Math.Abs(a):

int a = 2011;
int b = 1990;
Console.WriteLine("Greater: {0}", (a + b + Math.Abs(a-b)) / 2);
Console.WriteLine("Smaller: {0}", (a + b - Math.Abs(a-b)) / 2);

The third solution uses bitwise operations:

int a = 1990;
int b = 2011;
int max = a - ((a - b) & ((a - b) >> 31));
Console.WriteLine(max);

There is another solution which is partially correct because it uses a

hidden conditional statement (the ternary ?: operator):

194 Fundamentals of Computer Programming with C#

int a = 1990;
int b = 2013;
int max = a > b ? a : b;
Console.WriteLine(max);

7. You can read the numbers in five different variables and finally sum

them and print the obtained sum. Note that the sum of 5 int values may

not fit in the int type so you should use long.

Another approach is using loops. When parsing the consecutive numbers

use conditional parsing with TryParseſ…ƀ. When an invalid number is

entered, repeat reading of the number. You can do this through while

loop with an appropriate exit condition. To avoid repetitive code you can

explore the for-loops from the chapter "Loops".

8. You can use the comparison statement "if" (you can read about it on

the Internet or from the chapter "Conditional Statements"). To avoid

repeating code you can use the looping construct "for" (you could read

about it online or in the chapter "Loops").

9. You should use a for-loop (see the chapter "Loops"). Read the numbers

one after another and accumulate their sum in a variable, which then

display on the console at the end.

10. Use a combination of loops (see the chapter "Loops") and the methods

Console.ReadLine(), Console.WriteLine() and Int32.Parse().

11. More about the Fibonacci sequence can be found in Wikipedia at:

http://en.wikipedia.org/wiki/Fibonacci_sequence. For the solution of the

problem use 2 temporary variables in which store the last 2 calculated

values and with a loop calculate the rest (each subsequent number in the

sequence is a sum of the last two). Use a for-loop to implement the

repeating logic (see the chapter "Loops").

12. Accumulate the sum of the sequence in a variable inside a while-loop

(see the chapter "Loops"). At each step compare the old sum with the

new sum. If the difference between the two sums Math.Abs(current_sum
– old_sum) is less than the required precision (0.001), the calculation

should finish because the difference is constantly decreasing and the

precision is constantly increasing at each step of the loop. The expected

result is 1.307.

http://en.wikipedia.org/wiki/Fibonacci_sequence

